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6.5 Parallel shifts in the yield curve

A frequent assumption made when analyzing bond portfolios is that small, parallel
shifts in the zero rate curve r(0, t) result in identical changes in the yield of every
bond in the portfolio.

To clarify why it is possible to make this assumption, consider a bond with
future cash flows ci at times ti, i = 1 : n. Let B be the value of the bond and let y
be the yield of the bond. If r(0, t) is the continuously compounded zero rate curve,
then, from (2.49) and (2.51), it follows that

B =

n∑

i=1

cie
−yti =

n∑

i=1

cie
−r(0,ti)ti. (6.63)

If a parallel shift of the zero rate curve occurs, then the zero rate curve r(0, t)
changes to r1(0, t) = r(0, t) + δr, where δr is small,8 but not necessarily positive.
Denote by B1 and y1 the new value and the new yield of the bond, respectively. As
in (6.63), we find that

B1 =

n∑

i=1

cie
−y1ti =

n∑

i=1

cie
−r1(0,ti)ti. (6.64)

Denote by Δy = y1 − y the shift in the yield of the bond. We will show that,
for δr small, it is reasonable to approximate Δy by δr.

From the linear Taylor approximation ex ≈ 1 + x, see (6.10), it follows that

e−(Δy)ti − 1 ≈ (1− (Δy)ti)− 1 = − (Δy)ti; (6.65)

e−(δr)ti − 1 ≈ (1− (δr)ti)− 1 = − (δr)ti. (6.66)

Recall that y1 = y + Δy and r1(0, t) = r(0, t) + δr. From (6.63–6.66), we obtain
that

B1 −B =

n∑

i=1

cie
−y1ti −

n∑

i=1

cie
−yti

=

n∑

i=1

ci

(
e−y1ti − e−yti

)

=

n∑

i=1

ci

(
e−(y+Δy)ti − e−yti

)

=

n∑

i=1

cie
−yti

(
e−(Δy)ti − 1

)

8Typical values for δr that are considered to be small are a few basis points. (One
percentage point is equal to 100 basis points (bps), i.e., one basis point is equal to 0.01%.)
For example, δr = 10bps = 0.1% = 0.001 is small enough for the approximations herein.
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≈
n∑

i=1

cie
−yti (−(Δy)ti)

= −Δy

n∑

i=1

ticie
−yti; (6.67)

B1 −B =

n∑

i=1

cie
−r1(0,ti)ti −

n∑

i=1

cie
−r(0,ti)ti

=

n∑

i=1

ci

(
e−r1(0,ti)ti − e−r(0,ti)ti

)

=

n∑

i=1

ci

(
e−(r(0,t)+δr)ti − e−r(0,ti)ti

)

=

n∑

i=1

cie
−r(0,ti)ti

(
e−(δr)ti − 1

)

≈
n∑

i=1

cie
−r(0,ti)ti (−(δr)ti)

= −δr

n∑

i=1

ticie
−r(0,ti)ti. (6.68)

The following approximation is generally very accurate and states that the
Macaulay duration and the Macaulay–Weill duration9 are approximately equal:

n∑

i=1

ticie
−yti ≈

n∑

i=1

ticie
−r(0,ti)ti. (6.69)

From (6.67–6.69), we conclude that

Δy ≈ δr. (6.70)

In other words, the following result was established:

9The difference between the two types of duration is given by discounting with respect
to the yield of the bond, for Macaulay duration, and with respect to the zero rate curve, for
the Macaulay–Weill duration, i.e.,

DMac =
1

B

n∑

i=1

ticie
−yti ;

DMac−Weil =
1

B

n∑

i=1

ticie
−r(0,ti)ti .
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Lemma 6.2. If the zero rate curve experiences a small parallel shift of size δr, the
corresponding change Δy in the yield of a bond is approximately equal to the parallel
shift in the zero rates, i.e., Δy ≈ δr.

6.6 Connections between bond returns, duration,

and convexity

Recall from section 2.7, that the modified duration and the convexity of a bond are
defined as

D = − 1

B

∂B

∂y
and C =

1

B

∂2B

∂y2
, (6.71)

where y is the yield of a bond with value B; cf. (2.52) and (2.58).
Also, recall from (2.51) that the value B of a bond with yield y paying cash–flows

ci and time ti, i = 1 : n, is

B(y) =

n∑

i=1

cie
−yti. (6.72)

If the yield of the bond changes from y to y + Δy over a small time interval Δt,
the new price of the bond can be computed as the sum of the discounted present
values of all the cash flows computed using the new yield y + Δy. Since the cash
flow ci will no longer be received at time ti, but at time ti −Δt, we find that10

B(y + Δy) =

n∑

i=1

cie
−(y+Δy)(ti−Δt).

An alternative to discounting the future cash flows to compute the new price of
the bond is given below.

Lemma 6.3. Let D and C be the modified duration and the convexity of a bond
with yield y and value B = B(y). Then,

ΔB

B
≈ −DΔy +

1

2
C(Δy)2, (6.73)

where ΔB = B(y + Δy)−B(y).

Note that an approximate value for the percentage return ΔB
B of a long bond position

can be computed using formula (6.73), without requiring specific knowledge of the
cash flows of the bond.

10We implicitly assumed that Δt is chosen small enough such that t1 − Δt > 0, where
t1 > 0 is the first cash flow date.


